Intel MPX Explained:
A Cross-layer Analysis of the Intel MPX System Stack”
https://Intel-MPX.github.io/

OLEKSII OLEKSENKO and DMITRII KUVAISKII, TU Dresden, Germany
PRAMOD BHATOTIA, The University of Edinburgh, United Kingdom
PASCAL FELBER, University of Neuchatel, Switzerland

CHRISTOF FETZER, TU Dresden, Germany

Memory-safety violations are the primary cause of security and reliability issues in software systems written
in unsafe languages. Given the limited adoption of decades-long research in software-based memory safety
approaches, as an alternative, Intel released Memory Protection Extensions (MPX)—a hardware-assisted
technique to achieve memory safety. In this work, we perform an exhaustive study of Intel MPX architecture
along three dimensions: (a) performance overheads, (b) security guarantees, and (c) usability issues.

We present the first detailed root cause analysis of problems in the Intel MPX architecture through a
cross-layer dissection of the entire system stack, involving the hardware, operating system, compilers, and
applications. To put our findings into perspective, we also present an in-depth comparison of Intel MPX with
three prominent types of software-based memory safety approaches. Lastly, based on our investigation, we
propose directions for potential changes to the Intel MPX architecture to aid the design space exploration of
future hardware extensions for memory safety.

CCS Concepts: « Security and privacy — Software security engineering;
Additional Key Words and Phrases: Memory safety; ISA extensions; Intel MPX

ACM Reference Format:

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2018. Intel MPX
Explained: A Cross-layer Analysis of the Intel MPX System Stack: https://Intel-MPX_.github.io/. Proc. ACM
Meas. Anal. Comput. Syst. 2, 2, Article 28 (June 2018), 30 pages. https://doi.org/10.1145/3224423

1 INTRODUCTION

The majority of critical software systems is written in low-level languages such as C or C++. These
languages give programmers explicit and fine-grained control over memory, which is especially
important for development of efficient software systems. Unfortunately, the ability to directly
control memory often leads to violations of memory safety properties, i.e., illegal accesses to
unintended memory regions [53].

“The paper presents only the summarized results—the detailed analysis is published on our website: https://Intel-
MPX_github.io/. Clicking on most figures/plots and (sub-)section headings in the paper will open a corresponding webpage.

Authors’ addresses: Oleksii Oleksenko; Dmitrii Kuvaiskii, TU Dresden, Dresden, Germany, {firstname.lastname}@tu-dresden.
de; Pramod Bhatotia, The University of Edinburgh, Edinburgh, United Kingdom, pramod.bhatotia@ed.ac.uk; Pascal Felber,
University of Neuchatel, Neuchétel, Switzerland, pascal.felber@unine.ch; Christof Fetzer, TU Dresden, Dresden, Germany,
Christof.Fetzer@tu-dresden.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2476-1249/2018/6-ART28 $15.00

https://doi.org/10.1145/3224423

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/
https://intel-mpx.github.io/
https://doi.org/10.1145/3224423
https://intel-mpx.github.io/
https://intel-mpx.github.io/
https://doi.org/10.1145/3224423

28:2 0. Oleksenko et al.

In particular, memory-safety violations emerge in the form of spatial and temporal errors. Spatial
errors—buffer overflows and out-of-bounds accesses—occur when a program reads from or writes
to a different memory region than the one expected by the developer. Temporal errors—wild and
dangling pointers—appear when trying to use an object before it was created or after it was deleted.

These memory-safety violations are the root cause of most reliability and security vulnerabilities
in legacy software systems [50]. Given its importance, over decades, a plethora of solutions have
been proposed for enforcing memory safety in unsafe languages, ranging from static analysis to
language extensions [1, 4, 12, 19, 28, 30, 32, 35, 37, 38, 40, 46, 58].

In this work, we concentrate on deterministic dynamic bounds-checking since it is widely regarded
as the only way of defending against all memory safety attacks [34, 50]. Bounds-checking techniques
augment the original unmodified program with metadata (bounds of live objects or allowed memory
regions) and insert checks against this metadata before each memory access. Unfortunately, the
state-of-the-art software-based approaches have seen limited adoption in practice, largely owing to
high performance overhead (50-150%), incomplete security guarantees, and incompatibility with
legacy libraries.

To overcome these limitations, Intel released Memory Protection Extensions (Intel MPX)—a set of
new ISA extensions as part of the Skylake microarchitecture [22, 23]. Its underlying idea is to provide
hardware assistance for enforcing memory safety, in the form of new instructions and registers, as
an alternative to the software-based approaches. Through its cross-layer support, involving the
hardware, operating system, compiler, and application levels—the Intel MPX architecture promises
to address the performance, security, and compatibility issues of previous software-only approaches.

In this paper, we showcase that Intel MPX has flaws in all three important dimensions: (a)
performance and memory overheads, (b) security guarantees, and (c) usability issues. Performance
is important because only solutions with low (up to 10-20%) runtime overhead have a chance to be
adopted in practice [50]. Security assessment of the available implementation on a diverse set of
memory vulnerabilities is required to verify advertised security guarantees. And lastly, usability
gives us insights on application-specific issues that arise when using the Intel MPX system stack
and need to be manually fixed.

This work presents the first detailed cross-layer dissection of the Intel MPX system stack,
comprising the hardware, operating system, compilers, and applications. Our work provides insights
on the causes of overheads, security, and usability issues in both the Intel MPX architecture and
its surrounding infrastructure. To fully explore Intel MPX’s pros and cons, we put the results
into perspective by comparing with existing software-based solutions. In particular, we compared
Intel MPX with three prominent classes of memory safety: trip-wire — AddressSanitizer [46],
object-based—SAFECode [12], and pointer-based—SoftBound [35]. Surprisingly, even though Intel
MPX is a specially designed hardware-assisted approach, it is not faster than the software-based
approaches.

We investigate Intel MPX and the aforementioned software-based approaches using a compre-
hensive range of micro-benchmarks and benchmark suites. Our investigation reveals that although
Intel MPX strives to solve an important problem, it is not yet practical because of the following
issues:

e New Intel MPX instructions are not as fast as expected and cause up to 4X slowdown in the
worst case, although compiler optimizations amortize it and lead to runtime overheads of
~50% on average.

e In contrast to other solutions, Intel MPX provides no protection against temporal memory
safety errors.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

Intel MPX Explained 28:3

o Inte]l MPX does not support multithreading inherently, which can lead to unsafe data races
in legacy threaded programs and if compilers do not synchronize bounds explicitly.

o Intel MPX does not support several common C/C++ programming idioms due to restrictions
on the allowed memory layout. In our experiments, 8-13% programs did not run correctly
without substantial code changes and additionally, 18% required non-intrusive manual fixes.

e Intel MPX is conflicting with some other ISA extensions resulting in performance issues.
More specifically, we investigated the issues that arise when Intel MPX is used in combination
with Intel TSX and Intel SGX.

e Lastly, MPX instructions incur significant performance penalty (15+%) even on earlier Intel
CPU generations without MPX support (e.g., Haswell).

Note that some of these flaws could be fixed by making a few minor changes to Intel MPX.
Specifically, there are relatively straightforward ways of implementing temporal safety, and the
compatibility problems could probably be fixed too. Yet, most of the performance and usability
issues are fundamental and would require substantial changes to the design of Intel MPX.

As of less critical issues, the supporting compiler infrastructure (compiler passes and runtime
libraries) is not mature enough and has bugs, such that 3-10% programs cannot compile/run. Fortu-
nately, these issues could be resolved by improving the toolchain, in contrast to the aforementioned
fundamental issues that require hardware modifications.

All these issues created a growing trend of re-purposing Intel MPX to provide coarse-grained
isolation of memory regions. In particular, out of the whole MPX stack, only two bounds-checking
instructions are usually employed to provide efficient Software Fault Isolation [7, 26, 29, 33, 42].
Meanwhile, we know of no successful attempts to use MPX for the original purpose of complete
memory safety. In fact, the interest of using Intel MPX for its direct purpose has become so little,
that GCC is deprecating the feature in GCC 9 [41].

Nevertheless, there is an urgent need for a lightweight practical hardware-assisted memory-
safety mechanism to end the eternal war in memory [50]. Based on our findings, we propose
potential directions for extensions to the Intel MPX architecture to address three important issues:
(1) performance and memory overheads, (2) security properties, and (3) transparent multithread-
ing support. Our work seeks to help in paving the way for future correct-by-design hardware
technologies.

To summarize, our paper makes the following contributions:

e We present the first detailed analysis of problems in the Intel MPX architecture through a
cross-layer dissection of the entire MPX system stack (§3).

e To put our findings into perspective, we present a comparison of Intel MPX with three
prominent types of software-based memory safety approaches (§4).

e Lastly, we suggest future directions for potential improvements to the MPX architecture (§6).

2 BACKGROUND

Before we delve into the details of the Intel MPX architecture, we first present a brief background
on state-of-the art software-based memory safety approaches. We analyze and evaluate these
approaches to put the design and results of MPX into perspective.

All spatial and temporal bugs, as well as memory attacks built on such vulnerabilities, are caused
by an access to a prohibited memory region. Accordingly, to prevent such errors, memory safety
must be imposed on the program, i.e., the following invariant must be enforced: memory accesses
must always stay within the originally intended (referent) objects.

To this end, software-based runtime bounds-checking techniques are used, broadly classified
as trip-wire, object-based, and pointer-based [34]. For comparison with Intel MPX, we chose a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

28:4 0. Oleksenko et al.

(a) Trip-wire: (b) Object-based: (c) Pointer-based:
AddressSanitizer SAFECode SoftBound
shadow memory Pool 1 shadow memory

secondary trie

- obj shadow ;=P LLB] UB |key]lock|
)
E redzone Pool 2 E i
. obj obj : obj
redzone E
1

Fig. 1. Designs of three memory-safety classes.

prominent example from each of the three classes: AddressSanitizer, SAFECode, and SoftBound
(Figure 1 highlights the differences between them).

Trip-wire approach: AddressSanitizer [46]. This class surrounds all objects with regions of
marked (poisoned) memory called redzones, so that any overflow will change values in this—
otherwise invariable—region and will be consequently detected [19, 20, 38, 46]. In particular,
AddressSanitizer reserves 1/8 of all virtual memory for the shadow memory at program startup; the
memory is accessed only by the instrumentation and not the original program. AddressSanitizer
updates data in the shadow memory whenever a new object is created and freed, and inserts checks
on shadow memory before memory accesses to objects. The check itself looks like this:

shadowAddr = MemToShadow(ptr)
if (ShadowlIsPoisoned(shadowAddr)) Error()

In addition, AddressSanitizer provides means to probabilistically detect temporal errors via a
quarantine zone: if a memory region has been freed, it is kept in the quarantine for some time
before it becomes allowed for reuse.

AddressSanitizer was built for debugging purposes and is not targeted for security. It is sometimes

used in this context for the lack of better alternatives [6, 34] but such use is discouraged [55] (e.g.,
because attackers may abuse the debugging features in AddressSanitizer’s run-time library). For
example, it may not detect non-contiguous out-of-bounds violations. Nevertheless, it detects many
spatial bugs and significantly raises the bar for the attacker. It is also the most widely-used technique
in its class, comparing favorably to other trip-wire techniques such as LBC [19], Purify [20], and
Valgrind [38].
Object-based approach: SAFECode [11, 12]. This class’s main idea is enforcing the intended
referent, i.e., making sure that pointer manipulations do not change the pointer’s referent object [1,
11, 12, 14-16, 44]. In SAFECode, this rule is relaxed: each object is allocated in one of several
fine-grained partitions—pools—determined at compile-time using pointer analysis; the pointer must
always land into the predefined pool. This technique allows powerful optimizations and simple
runtime checks against the pool bounds:

poolAddr = MaskLowBits(ptr)
if (poolAddr not in predefinedPoolAddrs) Error()
In addition, we considered other object-based approaches. CRED [44] has huge performance

overheads, mudflap [16] is deprecated in newer versions of GCC, and Baggy Bounds Checking [1]
and Low-Fat Pointers [14, 15] are not open sourced.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

Intel MPX Explained 28:5

(a) Original code

struct obj { char buf[100]; int len}

1 objx a[10] ;; Array of pointers to objs
2 for (i=0; i<M; i++): ;; M may be greater than 10
3 ai=a+1 ;; Pointer arithmetic on a
+ objptr = load ai ; Pointer to obj at a[i]
5 lenptr = objptr + 100 ;; Pointer to obj.len
¢ len = load lenptr

(b) Intel MPX
1 objx a[10]
2 a_b =bndmk a, a+79 ;; Make bounds [a, a+79]
3 for (i=0; i<M; i++):
4 ali=a+i
5 bndcla b, ai ;; Lower-bound check of a[i]
¢ bndcua_b, ai+7 ;; Upper-bound check of a[i]
7 objptr = load ai
s objptr_b = bndldx ai ;; Bounds for pointer at a[i]
s lenptr = objptr + 100
10 bndcl objptr_b, lenptr ;; Checks of obj.len |
1 bndcu objptr_b, lenptr+3 1

1z len = load lenptr

Fig. 2. Example of bounds checking using Intel MPX.

Pointer-based approach: SoftBound [35, 36]. Such approaches keep track of pointer bounds
(the lowest and the highest address the pointer is allowed to access) and check each memory
write and read against them [25, 32, 35-37, 47]. Note how SoftBound associates metadata not with
an object but rather with a pointer to the object. This allows pointer-based techniques to detect
intra-object overflows (one field overflowing into another field of the same struct) by narrowing
bounds associated with the particular pointer.

For our comparison, we used the SoftBound+CETS version which keeps pointer metadata in a
two-level trie—similar to MPX’s bounds tables—and introduces a scheme to protect against temporal
errors [36]. The checks are as follows:

LB,UB,key,lock = TrieLookup(ptr)
if (ptr < LB or ptr > UB or key != «lock) Error()

As for other pointer-based approaches, MemSafe [47] is not open sourced, and CCured [37],
Cyclone [25], and CheckedC [32] require manual changes in programs.

3 ANALYSIS OF THE INTEL MPX STACK

Intel Memory Protection Extension (MPX) provides a hardware assisted pointer-based mechanism
for memory safety. It is a cross-layer solution: (i) hardware layer introduces new instructions and
registers to operate on pointer bounds, (ii) operating system layer provides support for memory
management and exception handling, (iii) compiler and runtime layer adds instrumentation passes
and wrappers, and (iv) application layer allows for MPX-specific changes in programs. In the
following section, we separately analyze each layer of the Intel MPX system stack.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

HTTPS://INTEL-MPX.GITHUB.IO/DESIGN/

28:6 0. Oleksenko et al.

Instruction Description Latency Throughput
bndmk b,m create pointer bounds 1 2
bndcl b,m check mem-operand against lower bound 1 1
bndcl b,r check reg-operand against lower bound 1 2
bndcu b,m check mem-operand against upper bound 1 1
bndcu b,r check reg-operand against upper bound 1 2
bndmov b,m move pointer bounds from memory 1 1
bndmov b,b move pointer bounds to other register 1 2
bndmov m,b move pointer bounds to memory 2 0.5
bndldx b,m load pointer bounds from BT 4-6 0.4
bndstx m,b store pointer bounds in BT 4-6 0.3

Note: bndcu has a one’s complement version; we skip it for clarity

Table 1. Latency (cycles/instr) and throughput (instr/cycle) of Intel MPX instructions; b—MPX bounds register;
m—memory operand; r—general-purpose register operand.

Before going into details, we give a brief overview of MPX on a simple example shown in
Figure 2a. The original program allocates an array a[] with 10 pointers to objects of type obj (Line
1). Next, it iterates through the first M array items to read the objects’ lengths (Lines 2-6). Since M
is a variable, a bug may set M to a value that is larger than 10 and an overflow will happen.

Figure 2b shows the code with Intel MPX enabled. First, the bounds for the array a[] are created
on Line 2 (the array contains 10 pointers each 8 bytes wide, hence the upper-bound offset of 79).
Then in the loop, before the array item access on Line 7, two MPX bounds checks are inserted to
detect if a[i] overflows (Lines 5-6).

Now that the pointer to the object is loaded in objptr, the program wants to load the obj.1len
subfield. By design, Intel MPX must protect this second load by checking the bounds of the objptr
pointer. Thus, the bounds are first loaded via bndldx instruction (Line 8) and then the two bounds
checks are inserted before the load of the length value on Lines 10-11 (narrowing of bounds is not
shown for simplicity, see §3.3).

3.1 Hardware

At its core, Inte]l MPX provides 7 new instructions and a set of 128-bit bounds registers. The Skylake
architecture provides four registers named bnd@-bnd3. Each of them stores a lower bound in bits
0-63 and an upper bound in bits 64-127.

Instruction set. The new MPX instructions are: bndmk to create new bounds, bndcl and bndcu/bndcn
to compare the pointer value against the lower and upper bounds in bnd respectively, bndmov to
move bounds from one bnd register to another and to spill them to stack, and bndldx/bndstx to
load/store pointer bounds in special Bounds Tables respectively.

It is interesting to compare the benefits of hardware implementation of bounds-checking against
the software-only counterpart—SoftBound [35, 36]. First, Intel MPX introduces separate bounds reg-
isters to lower register pressure on the general-purpose register file, something that software-only
approaches suffer from. Second, dedicated bndcl and bndcu instructions substitute the software-
based “compare and branch” instruction sequence, saving one cycle and exerting no pressure on
branch predictor.

Storing bounds in memory. The current version of Intel MPX has only 4 bounds registers, which
is clearly not enough for real-world programs. All additional bounds have to be stored (spilled)
in memory, similar to spilling data out of registers. A simple and fast option is to copy them

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/design/#hardware
https://intel-mpx.github.io/design/#hardware
https://intel-mpx.github.io/design/#boundstore

Intel MPX Explained 28:7

® bndmk @ bndcl/bndcu @ bndmov @ bndldx ® bndstx

port 0 port 2 port 4 port 6
Int ALU Load ALU
VEC Store)
Store Shift
Branch
02e® ®@@6 ®6 00e®
port 1 port 3 port 5 port 7
Int ALU Load ALU
VEC Store VEC Store
ALU LEA
O@R@06 @6 0e® ®6

Fig. 3. Distribution of Intel MPX instructions among execution ports (Intel Skylake).

directly on stack with bndmov. However, it works only inside a single stack frame: if a pointer is
later reused in another function, its bounds will be lost. To solve this issue, two instructions were
introduced—bndstx and bndldx. They store/load bounds to/from a memory location derived from
the address of the pointer itself (see Figure 2b, Line 8), thus making it easy to find pointer bounds
without any additional information, though at a price of higher complexity.

When bndstx and bndldx are used, bounds are stored in a memory location calculated with
two-level address translation scheme, similar to virtual address translation. In particular, each
pointer has an entry in a Bounds Table (BT), which is allocated dynamically and is comparable
to a page table. Addresses of BTs are stored in a Bounds Directory (BD). For a specific pointer, its
entries in the BD and the BT are derived from the memory address in which the pointer is stored. In
contrast to virtual address translation, no dedicated hardware like MMU or TLB cache is introduced,
thus Intel MPX can experience performance degradation caused by cache thrashing (see §4.1).

Figure 4 shows pointer address translation on the example of bnd1ldx. In the first stage, the CPU:
@ extracts the offset of BD entry from bits 20-47 of the pointer address and shifts it by 3 bits (since
all BD entries are 23 bits long), @ loads the base address of BD from the BNDCFGx register, and ®
sums the base and the offset and loads the BD entry from the resulting address. In the second stage,
the CPU: @ extracts the offset of BT entry from bits 3—19 of the pointer address and shifts it by
5 bits (since all BT entries are 2° bits long), ® shifts the loaded entry—which corresponds to the
base of BT—by 3 to remove the metadata, and ® sums the base and the offset and @ finally loads
the BT entry from the resulting address. Note that a BT entry has an additional “pointer” field—if
the actual pointer value and the value in this field mismatch, Intel MPX will mark the bounds as
always-true (INIT), required for interoperability with legacy code.

This address translation mechanism is expensive—it requires approximately 3 register-to-register
moves, 3 shifts, and 2 memory loads. On top of it, since these 2 loads are non-contiguous, the
protected application has worse cache locality.

Analysis. As the first step in our evaluation, we measured latency and throughput of MPX instruc-
tions (Table 1), as well as their distribution among execution ports (Figure 3). The major bottleneck
is storing/loading the bounds with bndstx and bndldx since they undergo a complex algorithm of
accessing bounds tables.

In our measurement study (§4), we observed that Intel MPX protection does not increase the
IPC (instructions/cycle) of programs, which is usually the case for memory-safety techniques (see
Figure 11). This was surprising: we expected that Intel MPX would take advantage of underutilized
CPU resources for programs with low original IPC. To understand what causes this bottleneck, we
measured the throughput of typical MPX check sequences.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/microbenchmarks/#mpxinstr

28:8 0. Oleksenko et al.

.

127 64 63
Pointer
UBound Bounds Table
LBound
— > — > Bounds Table
® add 20 ® oS @ allocate BT
® shift by 3 Bounds Directory o 9 Sz
@ shift b 55 ot S % ® if BDE is emply: e .
4 Y s raise #BR &05 Bounds Directory
| base of BT I!— © P CPU @ load BDE
o o
BNDCFGX 2 S| @ store bounds
@ add =) T
base of BD a % Application

319
soa Fig. 5. The procedure of Bounds Table creation.

Fig. 4. Loading of pointer bounds in Intel
MPX.

(b) Direct bounds checks and (c) Relative bounds
load checks and load

[Load1| |Load2] [Load1| [Load2] [BNDCL1] [BNDCU1| [Load1] |Load2]| [BNDCL1 |
[enpciz] [enpcuz]
[Load1] [Load2] [Load1] [Load2] [BnDcL1] [ENDCUT1]
[BnDcL2| [BNDCUZ|

(a) Only load

Fig. 6. Bottleneck of bounds checking illustrated.

The measurements pointed to a bottleneck of bndcl/u b,m instructions due to contention on
a single execution port. Without checks (Figure 6a), our original benchmark could execute two
loads in parallel, achieving a throughput of 2 IPC (note that the loaded data is always in a Memory
Ordering Buffer). After adding bndcl/u b, r checks (Figure 6b), IPC increased to three instructions
per cycle (3 IPC): one load, one lower-, and one upper-bound check per cycle. For bndcl/u b,m
checks (Figure 6 c), however, IPC became less than original: two loads and four checks were
scheduled in four cycles, thus IPC of 1.5. In summary, the final IPC was ~1.5-3 (compare to original
IPC of 2), proving that the MPX-protected program typically has approximately the same IPC as the
original. (This causes major performance degradation, as Figures 9 and 10 show.)

3.2 Operating System

The OS has two main responsibilities in the context of Intel MPX: it handles bounds violations and
manages BTs, i.e., creates and deletes them. Both these actions are hooked to a new exception class,
#BR, introduced solely for Intel MPX.

Bounds exception handling. If an MPX-enabled CPU detects a bounds violation, #BR is raised
and the processor traps into the kernel. The kernel gets the violating address and bounds and
delivers them to the application using the SIGSEGV signal. At this point the application developer
has a choice: she can either provide an ad-hoc signal handler to recover or choose one of the default
policies: crash, print an error, or ignore it.

Bounds tables management. Two levels of bounds address translation are managed differently:
BD is allocated only once by a runtime library (at program startup) and BTs have to be created

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/design/#boundstore
https://intel-mpx.github.io/design/#operating-system
https://intel-mpx.github.io/microbenchmarks/#mpxchecks
https://intel-mpx.github.io/microbenchmarks/#mpxchecks
https://intel-mpx.github.io/design/#operating-system

Intel MPX Explained 28:9

Increase in # of instructions (%)

Type Slowdown User space Kernelspace
allocation 2.33% 7.5 160
+ de-allocation 2.25% 10 139

Table 2. Worst-case OS impact on performance of MPX.

dynamically on-demand. The later is a task of OS. The procedure is presented in Figure 5. Each
time an application tries to store pointer bounds @, the CPU loads the corresponding entry from
the BD and checks if it is a valid entry @. If the check fails, the CPU raises #BR and traps into the
kernel @. The kernel allocates a new BT @, stores its address in the BD entry ® and returns in the
user space ®. Then, the CPU stores bounds in the newly created BT and continues executing the
application in the normal mode of operation @. Since the application is oblivious to BT allocation,
the OS also frees these tables when they become unused.

Analysis. To illustrate the additional overhead of allocating and de-allocating BTs, we created two
microbenchmarks.The first one indirectly creates a large amount of BTs by storing a set of pointers
in sparse memory locations. The second one, in addition, frees all the memory right after it has
been assigned, thus triggering BT de-allocation.

Our measurement results are shown in Table 2. The overheads observed are 2.3X and are caused
purely by the BT management in the kernel (note the increase in number of instructions executed
in kernel space). From this we conclude that the OS may cause up to 2.3x slowdown, although we
did not encounter this scenario in real programs. We believe, the main reason why the overhead
does not manifest itself in real applications is because pointers are usually not sparse enough to
cause frequent allocations of BTs.

3.3 Compiler and Runtime Library

Hardware MPX support in the form of new instructions and registers significantly lowers perfor-
mance overhead of each separate bounds-checking operation. However, the main burden of efficient
and complete bounds checking of programs lies on the compiler and its associated runtime.
Compiler support. As of the date of this writing, only GCC 5.0+ and ICC 15.0+ have support
for Intel MPX [17, 23] (we used GCC 6.1.0 and ICC 17.0.0). Both GCC and ICC introduce the new
compiler pass called Pointer(s) Checker.

In short, Pointer Checker instruments the original program as follows. (1) It allocates static
bounds for global variables and inserts bndmk instructions for stack-allocated ones. (2) It inserts
bndcl and bndcu bounds-check instructions before each load or store from a pointer. (3) It moves
bounds from one bnd register to another using bndmov whenever a new pointer is created from an
old one. (4) It spills least used bounds to stack via bndmov if running out of available bnd registers.
(5) It loads/stores the associated bounds via bndldx/bndstx respectively whenever a pointer is
loaded/stored.

One of the advantages of Intel MPX is that it supports narrowing of struct bounds by design.
Consider struct obj from Figure 2. It contains two fields: a 100B buffer buf and an integer len
right after it. It is easy to see that an off-by-one overflow in obj.buf will spillover and corrupt
the adjacent obj.len. Approaches like AddressSanitizer and SAFECode by design cannot detect
such intra-object overflows. In contrast, Intel MPX can be instructed to narrow bounds when code
accesses a specific field of a struct, e.g., on Line 9 in Figure 2b. Here, instead of checking against
the bounds of the full object, the compiler would shrink objptr_b to only four bytes and compare

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/microbenchmarks/#os
https://intel-mpx.github.io/design/#compiler-and-runtime-library
https://intel-mpx.github.io/design/#compiler-support

28:10 0. Oleksenko et al.

Compiler & runtime issues GCC ICC
- Poor MPX pass optimizations * 22/38 3/38
- Bugs in MPX compiler pass:
- incorrect bounds during function calls - 2/38
- conflicts with auto-vectorization passes - 3/38
— corrupted stack due to C99 VLA arrays - 3/38
— unknown internal compiler error 1/38 -
- Bugs and issues in runtime libraries:
- Missing wrappers for libc functions all all
— Nullified bounds in memcpy wrapper all -
— Performance bug in memcpy wrapper - all

*One compiler has > 10% worse results than the other
Table 3. Issues in the compiler pass and runtime libraries of Intel MPX. Columns 2 and 3 show number of
affected programs (out of total 38 tested in §4).!

against these narrowed bounds on Lines 10-11. Narrowing of bounds may require (sometimes
intrusive) changes in the source code, and is enabled by default.

By default, the MPX pass instruments both memory writes and reads. The user can instruct the
MPX pass to instrument only writes to reduce performance overhead (from 2.5X to 1.3x for GCC).
This will provide lower but still sufficiently high security guarantees since the most dangerous
bugs are those that overwrite memory (classic overflows to gain privileged access to the remote
machine).

For performance, both GCC and ICC employ common optimizations: (1) Removing bounds-
checks when the compiler can statically prove safety of memory access; (2) Moving (hoisting)
bounds-checks out of simple loops.

Runtime library. As a final step of the MPX-enabled build process, the application must be linked
against two MPX-specific libraries: 1ibmpx and libmpxwrappers (1ibchkp for ICC).

The 1ibmpx library is responsible for MPX initialization at program startup: it enables hardware
and OS support, configures MPX runtime options (passed through environment variables), and
registers a #BR exception handler.

The libmpxwrappers library (and its analogue 1ibchkp in ICC) contains wrappers for functions
from C standard library (libc). MPX implementations do not instrument libc and instead wrap all
its functions with bounds-checking counterparts.

Issues. For both GCC and ICC, the compiler and runtime support have a number of issues summa-
rized in Table 3.

Concerning performance, current implementations of GCC and ICC take different stances when
it comes to optimizing MPX code. GCC is conservative and prefers stability over performance gains.
On many occasions, we noticed that the GCC-MPX pass disables other optimizations, e.g., loop
unrolling and autovectorization. It also hoists bounds-checks out of loops less often than ICC does.

1 All bugs were acknowledged by developers. Bug reports:
https://software.intel.com/en-us/forums/intel-c-compiler/topic/700550;
https://software.intel.com/en-us/forums/intel-c-compiler/topic/700675;
https://software.intel.com/en-us/forums/intel-c-compiler/topic/701764;
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78631

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/design/#runtime-library
https://software.intel.com/en-us/forums/intel-c-compiler/topic/700550
https://software.intel.com/en-us/forums/intel-c-compiler/topic/700675
https://software.intel.com/en-us/forums/intel-c-compiler/topic/701764
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78631

Intel MPX Explained 28:11

B Full (GCC)
OE) 4 B No narrow bounds (GCC)
£~ B Only write (GCC)
cg H Full (ICC)
=5 B No narrow bounds (ICC)
Bc B Only write (ICC)
N2
£2
S
z

Ll B

arraywrite arrayread

struct ptrcreation

Fig. 7. Intel MPX overheads in 3 possible scenarios: application is dominated by bounds-checking (arraywrite
and arrayread), by bounds creation and narrowing (struct), and by bounds propagation (ptrcreation).

ICC, on the other hand, is more aggressive in its MPX-related optimizations and does not prevent
other aggressive optimizations from being applied. Unfortunately, this intrusive behavior renders
ICC’s pass less stable: we detected three kinds of compiler bugs due to incorrect optimizations.

We also observed issues with the runtime wrapper libraries. First, only a handful of most widely-

used libc functions are covered, e.g., malloc, memcpy, strlen, etc. This leads to undetected bugs
when other functions are called, e.g., the bug with recv in Nginx. For use in production, these
libraries must be expanded to cover all of libc. Second, while most wrappers follow a simple pattern
of “check bounds and call real function”, there exist more complicated cases. For example, memcpy
must be implemented so that it copies not only the contents of one memory area to another, but
also all associated pointer bounds in BTs. GCC library uses a fast algorithm to achieve this, but
ICC’s libchkp has a performance bottleneck (see also §4).
Analysis. To understand the impact of different compiler flags and optimizations, we wrote four
microbenchmarks, each highlighting a separate MPX feature. Two benchmarks—arraywrite and
arrayread—perform writes to/reads from memory and stress bndcl and bndcu accordingly. The
struct benchmark writes in an inner array inside a struct and stresses the bounds-narrowing feature
via bndmk and bndmov. Finally, the ptrcreation benchmark constantly assigns new values to pointers
and stresses bounds propagation via bndstx. Figure 7 shows their performance overheads.

We can notice three interesting details. First, arraywrite and arrayread represent bare overhead
of bounds-checking instructions (all in registers), 50% in this case. struct has a higher overhead of
2.1-2.8% due to the more expensive making and moving of bounds to and from the stack. The 5x
overhead of ptrcreation is due to storing of bounds—the most expensive MPX operation (see §3.1).
Such high overhead is alarming because pointer-intensive applications require many loads and
stores of bounds.

Second, there is a 25% difference between GCC and ICC in arraywrite. This is the effect of
optimizations: GCC’s MPX pass blocks loop unrolling while ICC’s implementation takes advantage
of it. (Interestingly, the same happened in case of arrayread but the native ICC version was optimized
even better, which led to a relatively poor performance of ICC’s MPX.)

Third, the overhead of arrayread becomes negligible with the only-writes MPX version: the only
memory accesses in this benchmark are reads which are left uninstrumented. Finally, the same
logic applies to struct—disabling narrowing of bounds effectively removes expensive bndmk and
bndmov instructions and lowers overhead to a bare minimum.

3.4 Applications

Next, we discuss three main issues of MPX at the application level.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/microbenchmarks/#performance
https://intel-mpx.github.io/case-studies/#security-1
https://intel-mpx.github.io/microbenchmarks/#performance
https://intel-mpx.github.io/design/#application

28:12 0. Oleksenko et al.

Application-level issues GCC ICC
- Flexible or variable-sized array (arr[1] /arr[]) 7/38 7/38
— of them fixable: 777 77
— Accessing struct through struct field* 1/38 3/38
- of them fixable: 0/1 0/3
- Custom memory management 2/38 2/38
- of them fixable: 0/2 0/2

* GCC affects less programs due to milder rules w.r.t. first field of struct
Table 4. Applications may violate memory-model assumptions of Intel MPX. Columns 2 and 3 show number
of misbehaving programs (out of total 38).

Not supported C idioms. MPX does not work correctly with several common C idioms (see
Table 4), especially when narrowing of bounds is applied and applications deviate from the standard
memory model [8, 31]. First, flexible array fields with array size of one (e.g., arr[1]) as well as
variable-sized arrays (e.g., arr[]) get incorrect bounds under Intel MPX, which leads to false
positives. (Note that the C99-standard arr[@] is acceptable and does not break programs.) Second,
intra-structure accesses—using a struct field (usually the first field of struct) to access other fields of
the struct—breaks the assumptions of Intel MPX and leads to runtime #BR exceptions.” Third, some
programs introduce custom memory management for performance, ignoring restrictions of the C
memory model completely, which leads to false positives. More detailed discussion of this issues
can be found on the website.

Ultimately, all such non-compliant cases must be fixed (indeed, we patched flexible/variable-
length array issues to work under Intel MPX). However, sometimes the user may have strong
incentives against modifying the original code. In this case, she can opt for slightly worse security
guarantees and disable narrowing of bounds. Another non-intrusive alternative is to mark objects
that must not be narrowed (e.g., flexible arrays) with a special attribute.

Multithreading issues. Current Intel MPX implementations may introduce false positives and
negatives in multithreaded programs [8, 45]. The problem arises when a pointer and its bounds
are loaded or stored. Ideally, these two operations must be performed atomically, but neither the
current hardware implementation nor GCC/ICC compilers enforce this atomicity.

Consider the example in Figure 8. A “pointer bounds” data race happens on the arr array of
pointers. The background thread fills this array with all pointers to the first or to the second object
alternately. Meanwhile, the main thread accesses whatever object is currently pointed-to by the
array items. Note that if of fset is zero, then the main thread always accesses the correct object,
otherwise it accesses an incorrect, adjacent object. The second case, introduces a concurrency
vulnerability which could be exploited by an adversary [59].

With Intel MPX, additional bndstx instructions are inserted in Lines 2-3 to store the object
bounds. Also, a bndldx instruction is inserted after Line 6 to retrieve the bound for an object
referenced by ai. Bound checks bndcl and bndcu are also added after Line 6, before the actual
access to the object. Now, the following race can occur. The main thread loads the pointer-to-first-
object from the array and—right before loading the corresponding bound—is preempted by the
background thread. The background thread overwrites all array items such that they point to the
second object, and also overwrites the corresponding bounds. Finally, the main thread is scheduled
back and loads the bound, however, the bound now corresponds to the second object. The main

2GCC makes an exception for the case of the access to other struct fields through the first field since it is such a popular
practice, but ICC is strict and does not have this special rule.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/design/#not-supported-c-idioms
https://intel-mpx.github.io/design/#not-supported-c-idioms
https://intel-mpx.github.io/dummy
https://intel-mpx.github.io/microbenchmarks/#multithreading

Intel MPX Explained 28:13

char+ arr[1000] ;; Array with MPX data race
char obj1 ;; Two adjacent objects]
char obj2]
while (true): ;; Background thread

for (i=0; i<1000; i++) arr[i] = &obj1l
for (i=0; i<1000; i++) arr[i] = &obj2
while (true): ;; Main thread
for (i=0; i<1000; i++):
ai = arr[i]
result += «(ai + offset)

Fig. 8. A multithreaded program that breaks Intel MPX. If of fset=0 then false alarms, else undetected bugs.
Note that the code has undefined behavior under C11 memory model.

thread is left with the pointer to the first object but with the bounds of the second one—breaking
the original program. If implemented in C, this test causes false positives (of fset=0) and false
negatives (of fset=1) in both GCC and ICC versions.

We must note that the multithreading code from Figure 8 does not conform to the memory model

introduced in C11 and C++11 standards. Under C11, this code by itself has undefined behavior, and
the compilers are free to produce a potentially misbehaving program. Thus, the discussion above
applies only to legacy C/C++ code where the data race in Figure 8 is technically allowed. Under the
new C11 thread model, arr in Figure 8 must be declared as an array of atomic pointers. Ideally, the
compiler would recognize loads/stores of atomic pointers and enclose them and their corresponding
bounds loads/stores in a critical section. Enclosing the atomic pointer-and-bounds update in one
synchronization block (e.g., via locks or TSX) could be a trivial addition to the MPX compiler pass,
however, at the cost of substantial performance overhead. Unfortunately, our investigation proved
that current compilers do not generate correct code neither with GCC-specific __atomic_store()
nor with C11-defined _Atomic types.
Interaction with other ISA extensions. Intel MPX can cause issues when used together with
other ISA extensions, such as Intel TSX and Intel SGX: When used inside an Intel TSX hardware
transaction, it may cause additional spurious aborts [24, 27], further reducing applications’ perfor-
mance. In the case of SGX, the architectural features of SGX enclaves, especially the restricted EPC
memory region, conflict with the memory requirements of Intel MPX. In our experience [28], some
real-world applications using MPX inside the enclave (even with tiny input sizes) crash because of
the high memory overheads of Intel MPX.

4 EVALUATION

In this section, we compare Intel MPX with the software-based approaches (§2) across three
dimensions: performance (§4.1), security (§4.2), and usability (§4.3).

Applications. We based our evaluation on prominent benchmark suites: PARSEC 3.0 [5], Phoenix
2.0 [43], and SPEC CPU2006 [21] (38 benchmarks in total), and on attacks from RIPE [56]. In
addition, we experimented with three real-world case studies: Apache, Nginx, and Memcached.
We also evaluated security guarantees of all four approaches with real-world exploits such as
Heartbleed, denial-of-service, and a ROP attack. Due to space constraints, we cover the results for
case studies on the corresponding website page.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/case-studies/

28:14 0. Oleksenko et al.

8 ASan B MPX(ICC) B MPX (GCC) SAFECode SoftBound

IS

)

Normalized runtime
(w.r.t. native)

7
7
7
’
7
S

/ AN N N % 210N § 78 N
PEC smatch matrixmul wordcent blackscholes facesim swaptions bz: mcf perlbmk

Fig. 9. Performance (runtime) overhead with respect to native version. (Lower is better.)

Bound

<3

AN\
5
o
o

IS

7
/
7
7
7
7
%

Phoenix PARSEC

>

Instruction overhead
(w.r.t. native)

A
matrixmul wordc

[NANANAANANANENRNNNNNNNNNN
ANNANANNNNNNNRNNNNNNNRN

WLl TaeA
| ANNNNNNANNNNNNNNY

A 2
t blackscholes facesim swaptions bz

el
m
(o]
23
3
2
3
5
3

Fig. 10. Increase in number of instructions with respect to native version. (Lower is better.)

Experimental setup. The machines we used are equipped with an Intel Skylake® 3.40GHz CPU
with 4 physical cores (8 hyper-threads), 32KB L1, 256KB L2, and 8MB shared L3 caches, 64 GB of
RAM, and run a Docker container on top of Ubuntu 16.04 (Linux 4.4.0). The compilers we used are
GCC 6.1.0, ICC 17.0.0, and Clang/LLVM 3.8.0. The complete experimental setup is described on the
corresponding website.

4.1 Performance

To evaluate overheads incurred by Intel MPX, we tested the three benchmark suites on both the
ICC and GCC implementations of MPX, as well as AddressSanitizer, SAFECode, and SoftBound.
Because of the page limit, the paper presents only geomean averages (the first three bar groups
on figures) together with a few peculiar outliers (three for each benchmark suite). The complete
results can be found on the website.

Runtime overhead. We start with the single most important parameter: runtime overhead (see
Figure 9).

First, we note that ICC-MPX performs significantly better than GCC-MPX. At the same time, ICC
is less usable: only 30 programs out of total 38 (79%) build and run correctly, whereas 33 programs
out of 38 (87%) work under GCC (see also §4.3).

AddressSanitizer, despite being a software-only approach, performs on par with ICC-MPX and
better than GCC-MPX. This unexpected result testifies that the hardware-assisted performance
improvements of MPX are offset by complicated design and suboptimal instructions.

SAFECode and SoftBound show good results on Phoenix programs, but perform much worse—
both in terms of performance and usability—on PARSEC and SPEC. First, consider SAFECode on
Phoenix: due to the almost-pointerless design and simplicity of Phoenix programs, SAFECode
achieves a low overhead of 5%. However, it could run only 18 programs out of 31 (58%) on PARSEC
and SPEC and exhibited the highest overall overheads. SoftBound executed only 7 programs on
PARSEC and SPEC (23%). Moreover, both SAFECode and SoftBound showed unstable behavior:
some programs had overheads of more than 20 X .

3We have not tested Kaby Lake and Coffee Lake architectures as they do not introduce changes to Intel MPX.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/performance/#performance
https://intel-mpx.github.io/performance/#instruction-overhead
https://intel-mpx.github.io/methodology/
https://intel-mpx.github.io/performance/
https://intel-mpx.github.io/performance/
https://intel-mpx.github.io/performance/#performance

Intel MPX Explained 28:15

5 | O Native (GCC) ASan B MPX(ICC) B MPX (GCC) SAFECode SoftBound

IS

)

Processor IPC
(instructions/cycle)
w

B sy
ARy

ez
ez,

S RSSSSSSSsw
S [SS5S5.SSSSINIRRSNNRY

7
7
/
Y
A
A
] I
4

SP W

iX PARS

m

C E

(o]
%)
3
=8

rdcnt blackscholes facesim swaptions

Fig. 11. IPC (instructions/cycle) numbers for native and protected versions. (Higher is better.)

=)
3

L1 load hits

L1 store hits

L2 load hits

LLC load hits
LLC load misses
LLC store misses

Native (GCC)

80

60

zZ ZESOO@

40

Cache hits and misses
(w.r.t. all instructions, %)

20

Q- ==z
=
R
<
)
o]
o

SAFECode (Clang)
SoftBound (Clang)

NATGCD NAITGCE NALGCB N G OB
smatch matrixmul wordent blackscholes facesim swaptions bz2 mcf perlbmk

NALGCER NATGCB NALGCE NATGCB NAIGCE

Fig. 12. CPU cache behavior of native and protected versions.

Instruction overhead. In most cases, performance overheads are dominated by a single factor:
the increase in number of instructions executed in a protected application. This can be seen if we
compare Figures 9 and 10; there is a strong correlation between them.

As expected, the optimized MPX (i.e., ICC version) has low instruction overhead due to its HW
assistance (~70% lower than AddressSanitizer). Thus, one could expect sufficiently low performance
overheads of Intel MPX once the throughput and latencies of Intel MPX instructions improve (see
§6).

Instruction overhead of Intel MPX may also come from the management of BTs (see §3.2).

However, we did not observe a noticeable impact in real-world applications. Even those applications
that create hundreds of BTs exhibit a minor slowdown in comparison to other factors.
IPC. Many programs do not utilize the CPU execution-unit resources fully. For example, the
theoretical IPC (instructions/cycle) of our machine is ~5, but many programs achieve only 1-2 IPC
in native executions (see Figure 11). Thus, memory-safety techniques benefit from underutilized
CPU and partially mask their performance overhead.

The most important observation here is that Intel MPX does not increase IPC. Our microbench-
marks (§3.1) indicate that this is caused by contention of MPX bounds-checking instructions on
one execution port. If this functionality would be available on more ports, Intel MPX would be able
to use instruction parallelism to a higher extent and the overheads would be lower—similarly to
the software-based approaches. At the same time, software-only approaches—especially Address-
Sanitizer and SoftBound—significantly increase IPC, partially hiding their performance overheads.

Cache utilization. Some programs are memory-intensive and stress the CPU cache system. If
a native program has many L1 or LLC cache misses, then the memory subsystem becomes the
bottleneck. In these cases, memory-safety techniques can partially hide their performance overhead.

It can be illustrated with the wordcnt example compiled with ICC-MPX (Figure 12). It has a huge
instruction overhead of 4%, IPC close to native, and (as we will see next) many expensive bndldx
and bndstx operations. And still its performance overhead is only 3X. Why? It appears the native
version of wordcnt has a significant number of cache misses. They have high performance cost and
therefore can partially mask the overhead of ICC-MPX.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/performance/#ipc
https://intel-mpx.github.io/performance/#cache-utilization
https://intel-mpx.github.io/performance/#instruction-overhead
https://intel-mpx.github.io/performance/#ipc
https://intel-mpx.github.io/performance/#cache-utilization

28:16 0. Oleksenko et al.

bndcl

|
9] — O bndcu
¢ 40 — — .‘ N O bndidx
55 = \ bndstx
R o l & B bndmovreg
£5 =5 bndmovmem
2% - = I N H
x5
= 1 I MPX (ICC)
E] I MPXo.w. (ICC)
= G MPX (GCC)
G MPXo.w. (GCC)

o

N TG ; ; : I
smatch facesim swaptions bz2 perlbmk

Fig. 13. Shares of Intel MPX instructions with respect to all executed instructions. (Lower is better.)

ASan H MPX (ICC) E MPX (GCC) SAFECode SoftBound

3 '

£2

S8

2

£Z

[

=

Fig. 14. Memory overhead with respect to native version. (Lower is better.)

Intel MPX instructions. For Intel MPX, one of the important performance factors is the type of
instructions that are used in instrumentation. In particular, storing (bndstx) and loading (bnd1dx)
bounds require two-level address translation — a very expensive operation that can break cache
locality (see §3.1). To prove it, we measured the shares of MPX instructions in the total number of
instructions of each program (Figure 13).

There is a strong correlation between the share of bndstx and bndldx instructions and perfor-
mance overheads. For example, matrixmul under ICC-MPX contains almost exclusively bounds
checks: accordingly, there is a direct mapping between instruction and performance overheads.
However, the GCC-MPX version is less optimized and inserts many bndldxs, which leads to a
significantly higher overhead.

The ICC-MPX version of wordcnt has a ridiculous share of bnd1ldx and bndstx instructions. This
is due to a performance bug in libchkp library of ICC that uses a naive bounds-copying algorithm
for the memcpy wrapper (see §3.3).

Memory consumption. In some scenarios, memory overheads (more specifically, resident set
size overheads) can be a limiting factor, e.g., for servers in data centers which co-locate programs
and perform frequent migrations. Thus, Figure 14 shows memory overhead measurements.

On average, Intel MPX has a 2.1X memory overhead under ICC version and 1.9X under GCC. It is
a significant improvement over AddressSanitizer (2.8%). There are three main reasons for that. First,
AddressSanitizer changes the memory layout of allocated objects by adding “redzones” around each
object. Second, it maintains a “shadow zone” that is directly mapped to main memory and grows
linearly with the program’s working set size. Third, AddressSanitizer has a “quarantine” feature
that restricts the reuse of freed memory. On the contrary, Intel MPX allocates space only for pointer-
bounds metadata and has an intermediary Bounds Directory that trades lower memory consumption
for longer access time. Interestingly, SAFECode exhibits even lower memory overheads because
of its pool-allocation technique. Unfortunately, low memory consumption does not imply good
performance.

Influence of additional Intel MPX features. Figure 15 shows performance impact of two main
security features of Intel MPX (§3.3). Bounds narrowing increases security level but may harm
performance. However, the impact appears to be minor because the number of checks is not

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/performance/#mpx-instructions
https://intel-mpx.github.io/performance/#memory-consumption
https://intel-mpx.github.io/performance/#mpx-instructions
https://intel-mpx.github.io/performance/#memory-consumption
https://intel-mpx.github.io/performance/#mpx-features

Intel MPX Explained 28:17

g | @ Full (ICC) HE No narrow bounds (ICC) B Only write (ICC) B Full (GCC) E No narrow bounds (GCC) B Only write (GCC)

IS

)

Normalized runtime
(w.r.t. native)

Phoenix PARSEC SPEC smatch matrixmul wordent blackscholes facesim swaptions bz2 mcf perlbmk

Fig. 15. Impact of MPX features—narrowing and only-write protection—on performance. (Lower is better.)

4 0O Native (GCC) B ASan B MPX (ICC) B MPX (GCC)

w.r.t. 2 threads
n

Speedup of 8 threads

Phoenix PARSEC inearreg smatch matrixmul wordent vips streamcluster raytrace swaptions

Fig. 16. Relative speedup (scalability) with 8 threads compared to 2 threads. (Higher is better.)

¢ [E MPX(ICC) B MPX (GCC)

(w.r.t. native)
»~

Normalized runtime
n

Phoenix PARSEC SPEC smatch matrixmul wordent blacksholes facesim swaptions bz2 mcf perlbmk

Fig. 17. Performance (runtime) overhead with respect to native version when MPX instructions are executed
as NOPs. (Lower is better.)

changed. Only-write protection, on the other side, improves performance by removing checks on
memory reads, having to instrument less code.

Multithreading. To evaluate multithreading, we measured execution times of all benchmarks
on 2 and 8 threads (Figure 16). Note that only Phoenix and PARSEC are multithreaded (SPEC is
not). Also, both SoftBound and SAFECode are not thread-safe and therefore were excluded from
measurements.

Figure 16 shows that the difference in scalability is minimal. For Intel MPX, it is caused by the
absence of multithreading support, which means that no additional code is executed in multithreaded
versions. For AddressSanitizer, there is no need for explicit synchronization—the approach is thread-
safe by design.

Peculiarly, GCC-MPX experiences not speedups but slowdowns on linearreg and wordcnt. Upon
examining these cases, we found out that this anomaly is due to detrimental cache line sharing of
BT entries.

For swaptions, AddressSanitizer and Intel MPX scale significantly worse than native. It turns
out that these techniques do not have enough spare IPC resources to fully utilize 8 threads in
comparison to the native version (the problem of hyperthreading). Similarly, for streamcluster,
Intel MPX performs worse than AddressSanitizer and native versions. This is again an issue with
hyperthreading: Intel MPX instructions saturate IPC resources on 8 threads and thus cannot scale
as well as native.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/performance/#performance-1
https://intel-mpx.github.io/performance/#multithreading
https://intel-mpx.github.io/performance/#performance-on-older-cpu-architectures
https://intel-mpx.github.io/performance/#multithreading

28:18 0. Oleksenko et al.

Approach Working attacks

MPX (GCC) default * 41/64 (all memcpy and intra-object of.)
MPX (GCC) 0/64 (none)

MPX (GCC) no narrow 14/64 (all intra-object overflows)

MPX (ICC) 0/34 (none)

MPX (ICC) no narrow 14/34 (all intra-object overflows)
AddressSanitizer (GCC) 12/64 (all intra-object overflows)
SoftBound (Clang) 14/38 (all intra-object overflows)
SAFECode (Clang) 14/38 (all intra-object overflows)
*BNDPRESERVE=0 and w/o -fchkp-first-field-has-own-bounds
Table 5. Results of RIPE security benchmark. In Col. 2, “41/64” means that 64 attacks were successful in native
GCC version, and 41 attacks remained in MPX version.

Performance overhead on Haswell CPU that does not support Intel MPX. MPX-protected
applications can be executed even on older Intel CPUs that do not support Intel MPX (this feature
allows to distribute the same binaries on old and new architectures). In this case, MPX instructions
are executed as NOPs and, clearly, no memory-safety protection is provided. Yet, NOPs are not
free—each NOP takes 1 cycle to execute and occupies space in caches, in the instruction pipeline, etc.
It means that when running on old CPUs, the MPX-instrumented application is still slowed down.
To evaluate this effect, we run the same set of benchmarks on a Haswell machine. As Figure 17
shows, ICC-MPX and GCC-MPX introduce the overheads of 15% and 60 — 90% respectively.

4.2 Security

RIPE testbed. We evaluated all approaches against the RIPE security testbed [56]. RIPE is a
synthesized C program that tries to attack itself in a number of ways, by overflowing a buffer
allocated on the stack, heap, or in data or BSS segments. RIPE can imitate up to 850 attacks, including
shellcode, return-into-libc, and return-oriented programming. In our evaluation, even under relaxed
security flags—we disabled Linux ASLR, stack canaries, and fortify-source and enabled executable
stack—modern compilers were susceptible only to a small number of attacks. 64 attacks worked
under native GCC, 34 under ICC, and 38 under Clang.J‘

The results for all approaches are presented in Table 5. Surprisingly, a default GCC-MPX version
showed very poor results, with 41 attacks (or 64% of all possible attacks) succeeding. As it turned
out, the default GCC-MPX flags are sub-optimal. First, we found a bug in the memcpy wrapper
which forced bounds registers to be nullified, so the bounds checks on memcpy were rendered
useless (see Table 3). This bug disappears if the BNDPRESERVE environment variable is manually
set to one. Second, the MPX pass in GCC does not narrow bounds for the first field of a struct by
default, in contrast to ICC which is stricter. To catch intra-object overflows happening in the first
field of structs one needs to pass the -fchkp-first-field-has-own-bounds flag to GCC. When
we enabled these, all attacks were prevented; all next rows in the table were tested with these flags.

Other RIPE results were expected. Intel MPX versions without narrowing of bounds overlook 14
intra-object overflow attacks, where a vulnerable buffer and a victim object live in the same struct.
The same attacks are overlooked by AddressSanitizer, SoftBound, and SAFECode. We performed
the same experiment with only-writes versions of these approaches, and the results were exactly
the same. This is explained by the fact that RIPE constructs only control-flow hijacking attacks and
not information leaks (which could escape only-writes protection).

4RIPE is specifically tailored to GCC, thus more attacks are possible under this compiler than under others.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/performance/#performance-on-older-cpu-architectures
https://intel-mpx.github.io/security/
https://intel-mpx.github.io/security/#ripe

Intel MPX Explained 28:19

— 100

Broken programs (%

0 1 2 3 4 5 6
MPX Security levels

Fig. 18. Number of MPX-broken programs rises with stricter Intel MPX protection rules (higher security
levels).

Other detected bugs. During our experiments, we found 6 real out-of-bounds bugs. Five of these
bugs were already known, and one was detected by GCC-MPX and was not previously reported
(refer to the website for the list of bugs).

All bugs were detected by GCC-MPX with narrowing of bounds. Predictably, three intra-object
bugs and one read-only bug could not be detected by the no-narrowing and only-writes versions
of Intel MPX respectively. ICC-MPX detected only 3 bugs in total: in other cases programs failed
due to MPX-related issues (see §3.3 and §3.4). AddressSanitizer found only three of these bugs—it
checks bounds at the level of whole objects and cannot detect intra-object overflows. SAFECode
found two bugs and SoftBound—none of them (due to compiler bugs).

4.3 Usability

As we show in §3.4, some programs break under Intel MPX because they use unsupported C idioms
or outright violate the C standard. Moreover, as shown in §3.3, other programs even fail to compile
or run due to internal bugs in the compiler MPX passes (one case for GCC and 8 for ICC).

Figure 18 highlights the usability of Intel MPX, i.e., the number of MPX-protected programs
that fail to compile correctly and/or need significant code modifications. Note that many programs
can be easily fixed (Table 4, row 1); we do not count them as broken. Intel MPX security levels are
based on our classification and correspond to the stricter protection rules, where level 0 means
unprotected native version and 6 the most secure MPX configuration (see Table 7).
Encountered issues. Figure 19 presents an overview of the issues we encountered during our
experiments.

We have not encountered any usability issues with AddressSanitizer: By design, it makes no
assumptions on the C standard with respect to the memory model. Also, it is a supported product,
fixed and updated with each new version of GCC and Clang.

On the contrary, SoftBound and SAFECode are research prototypes. They work perfectly with
very simple programs from Phoenix, but are not able to compile/run correctly the more complicated
benchmarks from PARSEC and SPEC. Moreover, SoftBound does not support multithreading, and
any multithreaded program immediately fails under it.

Both GCC-MPX and ICC-MPX break most programs on Level 6 (with BNDPRESERVE=1). This is
because BNDPRESERVE does not clear bounds on pointers transferred from/to unprotected legacy
libraries. This means that any pointer returned from or modified by any legacy library (including C
standard library) will almost certainly contain wrong bounds. Because of this, 89% of GCC-MPX
and 76% of ICC-MPX programs break. These cases are represented as gray boxes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/usability/
https://intel-mpx.github.io/security/#others
https://intel-mpx.github.io/usability/#changes
https://intel-mpx.github.io/usability/

28:20 0. Oleksenko et al.

Intel MPX X Intel MPX .

Y AN

GCC 6.1 ICC 17.0 © w5 GCC 6.1 ICC 17.0 o 5

~ ° % ~ 2 o

. —~ - § 5 — ~ - § S

5 = 3 -~ ¢ & & 3 -~ = 3 -~ © 8 =

E =23 % ¢ =2 g & ¢ s 23T 2 _ % g 20

S5 -.32% <3238 ER £ 3 -.32% <3533 T o3

238358 s<35§£8 ¢ 5 % 23838 =388 ¢ 5 3

s e83s E£s8 g8 5§ g § scs8es8ses8 g8 8 5 g

- - w E 5 - - a5 5

T 9233998 8338 2§ 8§ S 923499 9339 <2 8§
histogram astar
kmeans bzip2

X linear_regression dealll

z 1 — — — — —

8 matrix_multiply o

2 — — — — —

o pca gobmk
string_match h264ref
word_count hmmer

Ibm 8
blackscholes — 1 8
Ny Sy — libquantum N
bodytrack — — a
1 mcf * o

canneal — — —
A milc 8
dedup — — — o
111 namd %)

o facesim — —

11 | omnetpp

% ferret (3) 1 —

4 . 11 1 perlbench (2)

< fluidanimate — —

X - povray

raytrace — — —
111 sjeng
streamcluster — — —
: — — — soplex
swaptions — — —
. 1 1 sphinx3
vips (2) — — —
11 xalancbmk
X264 — —
— = = * mcf fails only on test inputs but not on ref ones
* SoftBound always fails on multithreaded versions
Broken programs ’ Changes in programs
s workaround for ICC compiler bug (number of changes;
one if not specified)
mem model violation compiler bug conformance to memory model
interoperability with .
uninstrumented code el EesiEs) (aiins) real bug fixed

Fig. 19. All changes made to the programs under test as well as reasons why some programs break at compile-
or run-time.

Note that for Phoenix, GCC-MPX fails in most cases while ICC-MPX works correctly. This is
because of a slight difference in libc wrappers: all the failing programs use mmap64 function which
is correctly wrapped by ICC-MPX but ignored by GCC-MPX. Thus, in the GCC case, the newly
allocated pointer contains no bounds which (under BNDPRESERVE=1) is treated as an out-of-bounds
violation.

One can wonder why some programs still work even if interoperability with C standard library
is broken. The reason is that programs like kmeans, pca, and Ibm require literally no external
functions except malloc, memset, free, etc.—which are provided by the wrapper MPX libraries.

Some programs break due to memory model violation:

o ferret and raytrace both have structs with the first field used to access other fields in the
struct (a common practice that is actually disallowed by the C standard). ICC-MPX disallows
this behavior when bounds narrowing is enabled. GCC-MPX allows such behavior by default
and has a special switch to tighten it (-fno-chkp-first-field-has-own-bounds) which
we classify as Level 5.

e gcc has its own complex memory model with bit-twiddling, type-casting, and other practices
deprecated by the C standard.

e soplex manually modifies pointers-to-object from one address to another using pointer arith-
metic, without any respect towards pointer bounds. By design, Intel MPX cannot circumvent
this violation of the C standard. (The same happens in mcf but only in one corner-case on
test input.)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/usability/#usabilitytable

Intel MPX Explained 28:21

(a) Apache (b) Nginx ¢) Memcached
0.9 0.7
©-@ Native (GCC 2.5
08 0.6 (GCO) Ty
g V-V ASan (©)] 20
=07 05| e=& MPX (ICC) Vol ™ 8
) 04| -8 MPX(GCO) vl 15 U
go6le [1.0 ?
| 0.3 4
0.5 0.5 N
0.2 Z \4
0 10 20 30 40 50 0 10 20 30 40 50 100 150 200 250 300

Throughput (x10® msg/s)

Fig. 20. Throughput-latency for (a) Apache web server, (b) Nginx web server, and (c) Memcached caching
system.

e xalancbmk performs a container-style subtraction from the base of a struct. This leads to
GCC-MPX and ICC-MPX breaking when bounds narrowing is enabled.

e We also manually fixed some memory-model violations, e.g., flexible arrays with size 1
(arr[11]). These fixes are represented as yellow background.

In some cases, real bugs were detected (see also §4.2):

e Three bugs in ferret, h264ref, and perlbench were detected and fixed by us. These fixes are
represented as blue background.

o Three bugs in x264, h264ref, and perlbench were detected only by GCC-MPX versions. These
bugs are represented as red boxes. Note that ICC-MPX missed bugs in h264ref and perlbench.
Upon debugging, we noticed that ICC-MPX narrowed bounds less strictly than GCC-MPX
and thus missed the bugs. We were not able to hunt out the root cause, but presume it is due
to different memory layouts generated by GCC and ICC compilers.

In rare cases, we hit compiler bugs in GCC and ICC:

e GCC-MPX had only one bug, an obscure “fatal internal GCC compiler error” on only-write
versions of xalancbmk.

e ICC-MPX has an autovectorization bug triggered on some versions of vips, gobmk, h264ref,
and milc.

e ICC-MPX has a “wrong-bounds through indirect call” bug triggered on some versions of
x264 and xalancbmk.

e ICC-MPX has a bug we could not identify triggered on dealll.

e We also manually fixed all manifestations of the C99 VLA bug in ICC-MPX. These bugs are
represented as pink background.

5 CASE STUDIES

To understand how Intel MPX affects complex real-world applications, we experimented with
three case studies: Apache and Nginx web servers and Memcached memory caching system. We
evaluated these programs along three dimensions: performance and memory overheads, security
guarantees, and usability.

We compare default Intel MPX implementations of both GCC and ICC against the native version,
as well as AddressSanitizer. We were not able to compile any of the case studies under SoftBound
and SAFECode: in most cases, the Configure scripts complained about an “unsupported compiler”,
and in one case (Apache under SoftBound) the compilation crashed due to an internal compiler

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/case-studies/
HTTPS://INTEL-MPX.GITHUB.IO/CASE-STUDIES/

28:22 0. Oleksenko et al.

Apache Nginx Memcached

Native 9.4 43 73
MPX 120 18 352
ASan 33 380 95

Table 6. Memory usage (MB) for peak throughput. (GCC-MPX and ICC-MPX showed identical results.)

error. The native version we chose to show is GCC: native ICC and Clang versions have almost
identical results, with an exception of Nginx explained later. For the same reasons, we show only
the GCC implementation of AddressSanitizer.

All experiments were performed on the same machines as for other experiments (see §4). One
machine served as a server and a second one as clients, connected with a 1GB Ethernet cable and
an actual bandwidth of 938 Mbits/sec. We configured all case studies to utilize all 8 cores of the
server (details below). For other configuration parameters, we kept their default values.

All three programs were linked against their dependent libraries statically. We opted for static
linking to investigate the complete overhead of all components constituting each program.

5.1 Apache Web Server

For evaluation, we used Apache version 2.4.18 linked against OpenSSL 1.0.1f [48]. This OpenSSL
version is vulnerable to the infamous Heartbleed bug which allows the attacker to leak confidential
information such as secret keys and user passwords in plain-text [49]. Since both AddressSanitizer
and Intel MPX do not support inline assembly, we disabled it for all builds of Apache. To fully
utilize the server, we used the default configuration of Apache’s MPM event model.

The classic ab benchmark was run on a client machine to generate workload, constantly fetching
a static 2.3K web-page via HTTP, with a KeepAlive feature enabled. To adapt the load, we increased
the number of simultaneous requests at a time.

Unfortunately, while testing against Heartbleed, we discovered that ICC-MPX suffers from a
run-time Intel compiler bug * in the x509_cb OpenSSL function, leading to a crash of Apache. This
bug triggered only on HTTPS connections, thus allowing us to still run performance experiments
on ICC-MPX.

Performance. As Figure 20a shows, GCC-MPX, ICC-MPX, and AddressSanitizer all show minimal
overheads, achieving 95.3%, 95.7%, and 97.5% of native throughput. Overhead in latency did not
exceed 5%. Such good performance is explained by the fact that our experiment was limited by the
network and not CPU or memory. (We observed around 480 — 520% CPU utilization in all cases.)
In terms of memory usage (Table 6), AddressSanitizer exhibits an expected 3.5x overhead.
In contrast, Intel MPX variants have dramatic 12.8X increase in memory consumption. This is
explained by the fact that Apache allocates an additional 1MB of pointer-heavy data per each client,
which in turn leads to the allocation of many Bounds Tables.
Security. For security evaluation, we exploited the infamous Heartbleed bug [49, 52]. In a nutshell,
Heartbleed is triggered when a maliciously crafted TLS heartbeat message is received by the server.
The server does not sanity-check the length-of-payload parameter in the message header, thus
allowing memcpy to copy the process memory’s contents in the reply message. In this way, the
attacker can read confidential memory contents.

Shttps://software.intel.com/en-us/forums/intel-c-compiler/topic/700550

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/case-studies/#apache
https://software.intel.com/en-us/forums/intel-c-compiler/topic/700550

Intel MPX Explained 28:23

AddressSanitizer and GCC-MPX detect Heartbleed®.

5.2 Nginx Web Server

We tested Nginx version 1.4.0—the last version with a stack buffer overflow vulnerability [2]. Nginx
was configured with the “autodetected” number of worker processes to load all cores and was
benchmarked against the same ab benchmark as Apache.

To successfully run Nginx under GCC-MPX with narrowing of bounds, we had to manually
fix a variable-length array name[1] in the ngx_hash_elt_t struct to name[@]. However, ICC-
MPX with narrowing of bounds still refused to run correctly, crashing with a false positive in
ngx_http_merge_locations function. In a nutshell, the reason for this bug was a cast from a
smaller type, which rendered the bounds too narrow for the new, larger type. Note that GCC-MPX
did not experience the same problem because it enforces the first struct’s field to inherit the bounds
of the whole object by default—in contrast to ICC-MPX which takes a more rigorous stance. For
the following evaluation, we used the version of ICC-MPX with narrowing of bounds disabled.

Performance. With regards to performance (Figure 20b), Nginx has a similar behavior to Apache.
AddressSanitizer reaches 95% of native throughput, while GCC-MPX and ICC-MPX lag behind
with 86% and 89.5% respectively. Similar to Apache, this experiment was network-bound, with
CPU usage of 225% for native, 265% for Intel MPX, and 300% for AddressSanitizer. (CPU usage
numbers prove that HW-assisted approaches impose less CPU overheads.)

As a side note, Nginx has predictable behavior only under GCC. Native ICC version reaches only
85% of the GCC’s throughput, and native Clang only 90%. Even more surprising, the ICC-MPX
version performed 5% better than native ICC; similarly, the AddressSanitizer-Clang version was
10% better than native Clang. We are still investigating the reasons for this unexpected behavior.

As for memory consumption (Table 6), the situation is opposite as with Apache: Intel MPX
variants have a reasonable 4.2x memory overhead, but AddressSanitizer eats up 88X more memory
(it also has 625x more page faults and 13% more LLC cache misses). Why then Intel MPX is
slower than AddressSanitizer if their memory characteristics indicate otherwise? The reason for
the horrifying AddressSanitizer numbers is its “quarantine” feature—AddressSanitizer employs a
special memory management system which avoids re-allocating the same memory region for new
objects, thus decreasing the probability of temporal bugs (use-after-free). Instead, AddressSanitizer
marks the used memory as “poisoned” and requests new memory chunks from the OS (this explains
huge number of page faults). Since native Nginx recycles the same memory over and over again for
the incoming requests, AddressSanitizer experiences huge memory blow-up. When we disabled
the quarantine feature, AddressSanitizer used only 24MB of memory.

Note that this quarantine problem does not affect performance. Firstly, Nginx is network-bound
and has enough spare resources to hide this issue. Secondly, the rather large overhead of allocating
new memory hides the overhead of periodically requesting new chunks from the OS.

Security. To evaluate security, the bug under test was a stack buffer overflow CVE-2013-2028 that
can be used to launch a ROP attack [54]. Here, a maliciously crafted HT TP request forces Nginx
to erroneously recognize a signed integer as unsigned. Later, a recv function is called with the
overflown size argument and the bug is triggered.

Perhaps surprisingly, AddressSanitizer detects this bug, but both versions of Intel MPX do not.
The root cause is the run-time wrapper library: AddressSanitizer wraps all C library functions

%The actual situation with Heartbleed is more contrived. OpenSSL uses its own memory manager which partially bypasses
the wrappers around malloc and mmap. Thus, in reality memory-safety approaches find Heartbleed only if the length
parameter is greater than 32KB (the granularity at which OpenSSL allocates chunks of memory for its internal allocator)

[51].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/case-studies/#nginx

28:24 0. Oleksenko et al.

including recv, and the wrapper—not the Nginx instrumented code—detects the overflow. In case
of both GCC-MPX and ICC-MPX, only the most widely used functions, such as memcpy and strlen,
are wrapped and bounds-checked. That is why when recv is called, the overflow happens in the
unprotected C library function and goes undetected by Intel MPX.

This highlights the importance of full protection—not only protecting the program’s own code,
but also writing wrappers around all unprotected libraries used by the program. Another interesting
aspect is that this overflow bug is read-only and cannot be caught by write-only protection. No
matter how tempting it may sound to protect only writes, one must remember that buffer-overread
vulnerabilities will slip away from such low-overhead checking.

5.3 Memcached Caching System

Lastly, we experimented with Memcached version 1.4.15 [18]. This is the last version susceptible to
a simple DDoS attack [9]. In all experiments, Memcached was run with 8 threads to fully utilize
the server. For the client we used a memaslap benchmark from libmemcached with a default
configuration (90% reads of average size 1700B, 10% writes of average size 400B). We increased the
load by adapting the concurrency number.

After some vexing debugging experiences with Nginx and Apache, we were pleased to experience
no issues instrumenting Memcached with GCC-MPX and ICC-MPX.

Performance. Performance-wise, Memcached turned out to be the worst case for Intel MPX (see
Figure 20c). While AddressSanitizer performs on par with the native version, both GCC-MPX and
ICC-MPX achieved only 48 — 50% of maximum native throughput.

In case of native and AddressSanitizer, performance of Memcached was limited by network.
But it was not the case for Intel MPX: Memcached exercised only 70% of the network bandwidth.
The memory usage numbers in Table 6 help understand the bottleneck of Intel MPX. While
AddressSanitizer imposed only 30% memory overhead, both Intel MPX variants used 350MB of
memory (4.8X more than native). This huge memory overhead broke cache locality and resulted in
5.4x more page faults and 10 — 15% LLC misses, making Intel MPX versions essentially memory-
bound. (Indeed, the CPU utilization never exceeded 320%.)

Security. For security evaluation, we used a CVE-2011-4971 vulnerability [9]. In this denial-of-
service attack, a specially crafted packet is received by the server and passed to the handler
(conn_nread) which tries to copy all packet’s contents into another buffer via the memmove function.
However, due to the integer signedness error in the size argument, memmove tries to copy gigabytes
of data and quickly segfaults. All approaches—AddressSanitizer, GCC-MPX, and ICC-MPX—detected
buffer overflow in the affected function’s arguments and stopped the execution.

6 FUTURE RESEARCH DIRECTIONS

Given the fact that Intel MPX is impractical for fine-grained memory safety, the hardware is often
employed for unintended purposes, such as sandboxing and memory isolation [7, 26, 33, 42], or
even hardware fault tolerance [39]. These techniques usually work with only a few bounds that
isolate coarse-grained memory regions. They remove the overhead of loading/storing bounds and
managing the bounds tables, making the usage efficient.

Nevertheless—given the importance of memory safety violations — there is an urgent need for a
lightweight, practical hardware-assisted memory safety mechanism. In this section, we reexamine
the design of Intel MPX and suggest a set of changes that can help to achieve this goal. Note,
however, that the scope of the paper is Intel MPX evaluation and we consider the suggested changes
only as directions for future work. We neither implement nor evaluate them.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io/case-studies/#memcached

Intel MPX Explained 28:25

Issue #1: Intel MPX instructions incur high overheads. High performance overheads primarily
come from two sources. First, current processors execute bounds checking mostly sequentially.
Second, loading/storing bounds registers involves costly two-level address translation. Together,
these issues lead to substantial runtime overheads of ~50% even with all optimizations applied (in
the ICC case). Moreover, even on older architectures, with all MPX instructions treated as NOPs, it
still incurs surprisingly high 15% overhead in the best (ICC) case. (We measured this number on a
Haswell machine.)

Proposal: Parallel bounds checks. We can fix the first issue relatively easy. If the bounds checking
functionality is present on at least one more execution unit, CPU will execute the checks in parallel
with the corresponding memory accesses and the overhead will be hidden. We can observe this
effect in AddressSanitizer—high utilization of ILP significantly amortizes the cost of protection
(see §4.1). Considering that GCC-MPX has similar instruction overhead to AddressSanitizer, we
estimate that it will also have similar performance if the checks are parallelized (~50%). Accordingly,
ICC version would be even better, and the slowdowns may drop lower than 20%.

Proposal: Bounds cache. Object bounds tend to have high temporal and spatial locality, which
makes them perfect candidates for caching. However, in the current implementation, they share L1
cache with the application data, which causes more frequent cache misses. Introducing a third type
of cache—bounds cache—in addition to the existing data and instruction caches would solve this
issue.

Proposal: Compactly storing bounds in memory. We can further improve bounds management
by introducing a more suitable data structure for storing bounds. The scheme used in the current
version is based on a lookup trie, similarly to virtual address translation. Although tries are relatively
fast, they incur high memory overheads if the stored data is sparse. In the worst case, if pointers
are far enough from each other, each Bounds Table will contain only a single entry. Accordingly,
each pointer will waste a whole page of physical memory.

A hash-table-based data structure would have much lower memory overhead, although handling
hash collisions might lead to higher performance overheads. Therefore, we consider finding an
optimal data structure as future work.

Issue #2: Intel MPX does not provide temporal safety. Currently, Intel MPX protects only
against spatial (out-of-bounds accesses) but not temporal (dangling pointers) errors.

Proposal: Lock-and-key temporal protection. We can enforce temporal safety via the “lock-
and-key” strategy (similar to CETS [36]). It works as follows. Each memory object has an identifier—
key—which is unique and never reused. MPX associates each pointer with a pair of values: a key of
the referent object and a pointer to the lock memory region. When the memory allocator creates
an object, it writes its key to the address of the corresponding lock. Later, when it frees the object,
it also clears the lock. Thus, the lock and key values of the pointers will match only if the referent
object is still valid.

We can implement the lock-and-key protection without changes to the current Intel MPX
instruction set. If Intel MPX becomes thread-safe (see Issue 3), it will be sufficient to make the
comparison when the bounds are loaded/stored, i.e., it can be embedded in the bndldx/stx. Memory
layout can also be left as-is if we restrict the key value space to 21¢ values. In this case, we can store
both locks and keys in the “Reserved” field of Bounds Tables—the lock address in the lower 48 bits
and the key value in the higher 16 bits.

Issue #3: Intel MPX does not support multithreading transparently. An MPX-protected
multithreaded program can have both false positives (false alarms) and false negatives (missed bugs
and undetected attacks) if the application does not conform to C11 memory model or if the compiler

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

28:26 0. Oleksenko et al.

does not update bounds in atomic primitives. Until this issue is fixed—either at the software or the
hardware level—Intel MPX cannot be considered safe in multithreaded environments.

Proposal: Atomic bound loads/stores. One option would be to embed the bound stores/loads
into the memory accesses by introducing “secure” store and load instructions. However, it would
significantly limit compiler optimizations even when the optimizations are safe. Sometimes compiler
can statically prove that other threads cannot change the object bounds, e.g., when the object is
thread-local. In this case, it is legitimate to reuse the loaded bounds and to make such optimizations
as loop hoisting.

To address this issue, we propose an alternative approach. Our suggestion is to merge pairs
bndldx/bndstx-mov and assure their atomic execution. The instruction decoder could detect a
bndldx immediately followed by the corresponding mov in the instruction queue, and instruct
the rest of execution to handle these instructions atomically. Accordingly, when the compiler can
statically prove that the bounds were not changed since the previous load, it can treat the load as a
separate instruction and may apply the corresponding optimizations. If it is not provable, however,
the compiler must protect the memory access using this pattern—bndldx/bndstx-mov.

Alternative designs. The solutions we propose could solve some of the issues, but the primary
source of overhead in Intel MPX—numerous additional instructions—will stay. An efficient solution
would require a complete revision of the technology.

One interesting option is to use a capability-based system such as CHERI [57], which associates
each memory region with a “capability”—a pair of bounds and a set of permission rights for
the region. The approach is more transparent to the application and does not produce as much
pressure on instruction caches and CPU pipelines, although it comes at the cost of higher hardware
budget. Another avenue is the research on PUMP [3, 10]. Its tagged architecture provides a general
approach to enforce low-level security policies (including memory safety) through extensions to the
hardware and the entire system stack. Even though this architecture offers strong verifiable security
guarantees, the unconventional redesign of the whole stack seems too intrusive to be adopted
by commercial systems. In a similar vein, the Oracle Silicon Secured Memory (SSM) in SPARC
M7 processors [40] provides another custom hardware design to achieve probabilistic memory
safety. The SSM architecture relies on the comparison of hardware-enforced version numbers
to the pointers and respective memory regions to detect memory safety violations. Finally, the
AddressSanitizer group is developing a hardware-based version of their approach called Hardware-
Assisted AddressSanitizer (HWASAN) [13]. Although it has much lower memory requirements
than the software version, it suffers from the same security flaws; direct accesses to wrong objects
are not detected.

It is imperative that the future research on hardware-assisted memory safety should look for a
sweet spot to overcome the aforementioned limitations.

7 CONCLUSION

In this paper, we presented a detailed root cause analysis of problems in the Intel MPX architecture
through a cross-layer dissection of the entire system stack. To put our findings into perspective, we
also present an in-depth comparison of Intel MPX with three prominent types of software-based
memory safety approaches. Lastly, based on our findings, we propose potential changes to the
Intel MPX architecture to overcome these limitations. Table 7 summarizes the results of our study.
For convenience, we introduce six MPX security levels to highlight the trade-offs between security,
usability, and performance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

Intel MPX Explained 28:27

RIPE Unfound
attacks bugs Broken Perf (X)

Lvl Description Detects GCC ICC GCC ICC GCC ICC GCC IcCC
0 native program (no protection) — 64 34 6 3 0 0 1.00 1.00
1 MPX only-writes and no narrowing of bounds inter-object 14 14 3 0 3 5 129 118
overwrites
2 MPX no narrowing of bounds + overreads 14 14 3 0 2 8 239 146
3 MPX only-writes and narrowing of bounds all overwrites* 14 0 2 0 4 7 130 119
4 MPX narrowing of bounds (default) + all overreads* 14 0 0 0 4 9 252 147
5 + fchkp-first-field-has-own-bounds* + all overreads 0 - 0 6 - 2.52 -
6 + BNDPRESERVE=1 (protect all code) all overflows 0 0 34 29 - -
AddressSanitizer [46] inter-object 12 3 0 - 1.55 -
overflows

* except intra-object overflows through the first field of struct, level 5 removes this limitation (only relevant for GCC version)
Table 7. The summary table with our classification of Intel MPX security levels—from lowest L1 to highest
L6—highlights the trade-off between security (number of unprevented RIPE attacks and other Unfound
bugs in benchmarks), usability (number of MPX-Broken programs), and performance overhead (average Perf

overhead w.r.t. native executions). AddressSanitizer is shown for comparison in the last row

We hope that our work will help researchers develop the future security extensions, and
practitioners—to better understand the benefits and caveats of Intel MPX. We believe a hard-
ware extension that balances the trade-offs between the MPX and Capability-based ISAs (e.g.,
CHERI [57]) will have a lasting impact on improving the security and reliability of systems. So far,
our study has been acknowledged by computer architects, compiler teams, and software systems
groups. Many bugs we found in the MPX system stack have already been fixed by both GCC and
ICC compiler teams.

Details of the experiments. A detailed description of the experiments used in this study is pub-
lished on our website: https://Intel-MPX.github.io. Additionally, source code of the entire experimen-
tal infrastructure is publicly available under: https://github.com/TUDInfSE/Intel_MPX_Explained.

Acknowledgments. We thank our anonymous reviewers and our shepherd Thomas Wenisch for
their helpful comments. We would like to thank the developer of the GCC-MPX pass Ilya Enkovich,
the authors of AddressSanitizer (Konstantin Serebryany and Alexander Potapenko), SoftBound
(Santosh Nagarakatte and Milo Martin), and SAFECode (John Criswell) for the provided help with
their tools and for answering our questions. We also thank Bohdan Trach, Sergei Arnautov, and
Franz Gregor for their insightful reviews and comments.

This work was partly funded by the Federal Ministry of Education and Research of the Federal
Republic of Germany (03ZZ0517A, FastCloud) and by European Union’s Horizon 2020 research
and innovation programme under grant agreement 690111 (SecureCloud).

REFERENCES

[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy Bounds Checking: An Efficient and
Backwards-compatible Defense Against Out-of-bounds Errors. In Proceedings of the 18th Conference on USENIX Security
Symposium (Sec).

[2] Andrew Alexeev. 2016. nginx: The Architecture of Open Source Applications. http://www.aosabook.org/en/nginx.html.
Online; accessed August, 2017.

[3] Arthur Azevedo de Amorim, Maxime Dénes, Nick Giannarakis, Catalin Hritcu, Benjamin C. Pierce, Antal Spector-
Zabusky, and Andrew Tolmach. 2015. Micro-Policies: Formally Verified, Tag-Based Security Monitors. In 36th IEEE
Symposium on Security and Privacy (Oakland S&P).

[4] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory Safety for Unsafe Languages. In
Proceedings of the 27th Conference on Programming Language Design and Implementation (PLDI).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://intel-mpx.github.io
https://github.com/tudinfse/intel_mpx_explained
http://www.aosabook.org/en/nginx.html

28:28 0. Oleksenko et al.

[5] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors. In Proceedings of
the 5th Annual Workshop on Modeling, Benchmarking and Simulation (MoBS).

[6] The Tor Blog. 2017. Tor Browser 5.5a4-hardened is released. https://blog.torproject.org/blog/tor-browser-55a4-
hardened-released. Online; accessed August, 2017.

[7] Scott A. Carr and Mathias Payer. 2017. DataShield: Configurable Data Confidentiality and Integrity. In Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security (AsiaCCS).

[8] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj Vadera, Simon W. Moore, Michael
Roe, Brooks Davis, and Peter G. Neumann. 2015. Beyond the PDP-11: Architectural Support for a Memory-Safe
C Abstract Machine. In Proceedings of the 20th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[9] CVE details. 2011. Memcached bug: CVE-2011-4971. http://www.cvedetails.com/cve/cve-2011-4971. Online; accessed
August, 2017.

[10] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu, Jonathan M Smith, Thomas F Knight Jr,

Benjamin C Pierce, and Andre DeHon. 2015. Architectural support for software-defined metadata processing. ACM

SIGARCH Computer Architecture News (2015).

Dinakar Dhurjati and Vikram Adve. 2006. Backwards-compatible array bounds checking for C with very low overhead.

In Proceeding of the 28th international conference on Software engineering (ICSE).

[12] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFECode: enforcing alias analysis for weakly typed
languages. In Proceedings of the 27th Conference on Programming Language Design and Implementation (PLDI).

[13] Clang 7 documentation. 2018. Hardware-assisted AddressSanitizer Design Documentation. https://clang.llvm.org/

docs/HardwareAssisted AddressSanitizerDesign.html. Online; accessed May, 2018.

Gregory J. Duck and Roland H. C. Yap. 2016. Heap bounds protection with Low Fat Pointers. In Proceedings of the 25th

International Conference on Compiler Construction (CC’16).

Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro. 2017. Stack Bounds Protection with Low Fat Pointers. In

Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS ’17).

[16] Frank Eigler. 2016. Mudflap: pointer use checking for C/C++. https://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging.
Online; accessed August, 2017.

[17] Ilya Enkovich. 2016. Intel(R) Memory Protection Extensions (Intel MPX) support in the GCC compiler. https:

//gce.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler. Online; accessed August, 2017.

Brad Fitzpatrick. 2004. Distributed Caching with Memcached. In Linux Journal.

Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-weight Bounds Checking. In Proceedings of the 2012

International Symposium on Code Generation and Optimization (CGO).

Reed Hastings and Bob Joyce. 1991. Purify: Fast detection of memory leaks and access errors. In Proceedings of the

Winter USENIX Conference.

[21] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News (2006).

[22] Intel Corporation. 2013. Introduction to Intel(R) Memory Protection Extensions. https://software.intel.com/en-us/
Articles/introduction-to-intel-memory-protection-extensions. Online; accessed August, 2017.

[23] Intel Corporation. 2016. Intel(R) Memory Protection Extensions Enabling Guide. https://software.intel.com/en-us/

Articles/intel-memory-protection-extensions-enabling-guide. Online; accessed August, 2017.

Intel Corporation. 2016. Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A safe

dialect of C. In Proceedings of the 2002 Annual Technical Conference (ATC).

[26] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopoulos. 2017. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In Proceedings of the Twelfth European Conference on Computer Systems
(EuroSys).

[27] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2016. HAFT: Hardware-assisted
Fault Tolerance. In Proceedings of the Eleventh European Conference on Computer Systems (EuroSys).

[28] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. 2017. SGXBounds: Memory Safety for Shielded Execution. In Proceedings of the 2017 ACM European Conference

on Computer Systems (EuroSys).

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn Song. 2014. Code-Pointer

Integrity. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[30] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, Jr., and Andre DeHon. 2013. Low-fat Pointers:
Compact Encoding and Efficient Gate-level Implementation of Fat Pointers for Spatial Safety and Capability-based
Security. In Proceedings of the 2013 Conference on Computer and Communications Security (CCS).

[31] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and
Peter Sewell. 2016. Into the Depths of C: Elaborating the De Facto Standards. In Proceedings of the 37th ACM SIGPLAN

[11

—

[14

—

(15

—

[18
[19

—_

[20

[

—

[24
[25

—_

[29

[

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://blog.torproject.org/blog/tor-browser-55a4-hardened-released
https://blog.torproject.org/blog/tor-browser-55a4-hardened-released
http://www.cvedetails.com/cve/cve-2011-4971
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://software.intel.com/en-us/Articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/Articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/Articles/intel-memory-protection-extensions-enabling-guide
https://software.intel.com/en-us/Articles/intel-memory-protection-extensions-enabling-guide

Intel MPX Explained 28:29

Conference on Programming Language Design and Implementation (PLDI).

[32] Microsoft Research. 2016. Checked C. https://www.microsoft.com/en-us/research/project/checked-c/. Online; accessed

August, 2017.

Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael Franz. 2015. Opaque Control-Flow

Integrity. In Proceedings of the 22nd Annual Network and Distributed System Security Symposium (NDSS).

Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015. Everything You Want to Know About Pointer-

Based Checking. In Proceedings of the 1st Summit on Advances in Programming Languages (SNAPL).

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2009. SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C. In Proceedings of the 30th Conference on Programming Language Design

and Implementation (PLDI).

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2010. CETS: Compiler Enforced Temporal

Safety for C. In Proceedings of the 2010 International Symposium on Memory Management (ISMM).

[37] George C. Necula, Scott McPeak, Westley Weimer, George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured.

In Proceedings of the 29th Symposium on Principles of Programming Languages (POPL).

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumenta-

tion. In Proceedings of the 2007 Conference on Programming language design and implementation (PLDI).

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2016. Efficient Fault

Tolerance using Intel MPX and TSX. In Proceedings of 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN).

Oracle. 2017. Introduction to SPARC M7 and Silicon Secured Memory (SSM). https://swisdev.oracle.com/_files/What-

Is-SSM.html. Online; accessed August, 2017.

[41] GCC Patches. 2018. Remove MPX support. https://gcc.gnu.org/ml/gec-patches/2018-04/msg01225.html. Online;
accessed May, 2018.

[42] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychronakis, and Vasileios P. Kemerlis. 2017. kR
xor X: Comprehensive Kernel Protection Against Just-In-Time Code Reuse. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys).

[43] C.Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. 2007. Evaluating MapReduce for multi-core and

multiprocessor systems. In Proceedings of the 13th International Symposium on High Performance Computer Architecture

(HPCA).

Olatunji Ruwase and Monica S. Lam. 2004. A Practical Dynamic Buffer Overflow Detector. In Proceeding of the Network

and Distributed System Security Symposium (NDSS).

[45] Konstantin Serebryany. 2016. Discussion of Intel Memory Protection Extensions (MPX) and comparison with Address-
Sanitizer. https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtectionExtensions. Online;
accessed August, 2017.

[46] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast

Address Sanity Checker. In Proceedings of the 2012 Annual Technical Conference (ATC).

Matthew S. Simpson and Rajeev K. Barua. 2013. MemSafe: Ensuring the Spatial and Temporal Memory Safety of C at

Runtime. Software — Practice and Experience (2013).

[48] The Apache software foundation. 2016. Apache HTTP Server Project. http://httpd.apache.org/. Online; accessed
August, 2017.

[49] Synopsys. 2016. The Heartbleed Bug. http://heartbleed.com/. Online; accessed August, 2017.

[50] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In Proceedings of the
Symposium on Security and Privacy (SP).

[51] Ted Unangst. 2014. Heartbleed vs malloc.conf. http://www.tedunangst.com/flak/post/heartbleed-vs-mallocconf.
Online; accessed August, 2017.

[52] The Register. 2014. Anatomy of OpenSSL’s Heartbleed: Just four bytes trigger horror bug. http://www.theregister.co.

uk/2014/04/09/heartbleed_explained/. Online; accessed August, 2017.

Victor van der Veen, Nitish Dutt Sharma, Lorenzo Cavallaro, and Herbert Bos. 2012. Memory Errors: The Past, the

Present, and the Future. In Proceedings of the 15th International Symposium on Research in Attacks, Intrusions and

Defenses (RAID).

[54] VN Security. 2013. Analysis of nginx 1.3.9/1.4.0 stack buffer overflow and x64 exploitation (CVE-2013-2028). http:
//www.vnsecurity.net/research/2013/05/21/analysis- of-nginx-cve-2013-2028.html. Online; accessed August, 2017.

[55] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder. 2015. High System-Code Security with

Low Overhead. In Proceedings of the 2015 Symposium on Security and Privacy (SP).

John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen. 2011. RIPE: Runtime Intrusion

Prevention Evaluator. In Proceedings of the 27th Annual Computer Security Applications Conference (ACSAC).

[33

[t

[34

[l

[35

—

[36

—

[38

—

[39

—

[40

[t

[44

—

[47

—

—

[53

—

[56

—

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

https://www.microsoft.com/en-us/research/project/checked-c/
https://swisdev.oracle.com/_files/What-Is-SSM.html
https://swisdev.oracle.com/_files/What-Is-SSM.html
https://gcc.gnu.org/ml/gcc-patches/2018-04/msg01225.html
https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtectionExtensions
http://httpd.apache.org/
http://heartbleed.com/
http://www.tedunangst.com/flak/post/heartbleed-vs-mallocconf
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/
http://www.theregister.co.uk/2014/04/09/heartbleed_explained/
http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html

28:30 0. Oleksenko et al.

[57] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben
Laurie, Peter G. Neumann, Robert Norton, and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an
Age of Risk. In Proceeding of the 41st Annual International Symposium on Computer Architecture (ISCA).

[58] Yichen Xie, Andy Chou, and Dawson Engler. 2003. ARCHER : Using Symbolic, Path-sensitive Analysis to Detect
Memory Access Errors. ACM SIGSOFT Software Engineering Notes (2003).

[59] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. 2012. Concurrency Attacks. In Proceedings of the 4th
Conference on Hot Topics in Parallelism (HotPar).

Received February 2018; revised May 2018; accepted May 2018

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 28. Publication date: June 2018.

	Abstract
	1 Introduction
	2 Background
	3 Analysis of the Intel MPX Stack
	3.1 Hardware
	3.2 Operating System
	3.3 Compiler and Runtime Library
	3.4 Applications

	4 Evaluation
	4.1 Performance
	4.2 Security
	4.3 Usability

	5 Case Studies
	5.1 Apache Web Server
	5.2 Nginx Web Server
	5.3 Memcached Caching System

	6 Future Research Directions
	7 Conclusion
	References

